The Gcd Property and Irreducible Quadratic Polynomials

نویسنده

  • SAROJ MALIK
چکیده

The proof of the following theorem is presented: If D is, respectively, a Krull domain, a Dedekind domain, or a PrGfer domain, then D is correspondingly a UFD, a PID, or a Bezout domain if and only if every irreducible quadratic polynomial in D[X] is a prime element.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products Of Quadratic Polynomials With Roots Modulo Any Integer

We classify products of three quadratic polynomials, each irreducible over Q, which are solvable modulo m for every integer m > 1 but have no roots over the rational numbers. Polynomials with this property are known as intersective polynomials. We use Hensel’s Lemma and a refined version of Hensel’s Lemma to complete the proof. Mathematics Subject Classification: 11R09

متن کامل

On Stable Quadratic Polynomials

We recall that a polynomial f(X) ∈ K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f(X) ∈ Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f(X) ∈ Z[X] can be detected by a finite algorithm; this property is closely related to the stability ...

متن کامل

Polynomials over Finite Fields and Applications

Self-reciprocal irreducible monic (srim) polynomials over finite fields have been studied in the past. These polynomials can be studied in the context of quadratic transformation of irreducible polynomials over finite fields. In this talk we present the generalization of some of the results known about srim polynomials to polynomials obtained by quadratic transformation of irreducible polynomia...

متن کامل

Squarefree Values of Polynomials

where m is any integer > n:We will be interested in estimating the number of polynomials f(x) for which there exists an integer m such that f(m) is squarefree. This property should hold for all polynomials f(x) for which Nf is squarefree. However, this seems to be very di cult to establish. Nagel [8] showed that if f(x) 2 Z[x] is an irreducible quadratic and Nf is squarefree, then f(m) is squar...

متن کامل

Singular Polynomials and Modules for the Symmetric Groups

For certain negative rational numbers κ0, called singular values, and associated with the symmetric group SN on N objects, there exist homogeneous polynomials annihilated by each Dunkl operator when the parameter κ = κ0. It was shown by de Jeu, Opdam and the author (Trans. Amer. Math. Soc. 346 (1994), 237-256) that the singular values are exactly the values − n with 2 ≤ n ≤ N , m = 1, 2, . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004